If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying Y(dx + y) * dx + -2(x2 + -1y) * dy = 0 Reorder the terms for easier multiplication: Y * dx(dx + y) + -2(x2 + -1y) * dy = 0 Multiply Y * dx dxY(dx + y) + -2(x2 + -1y) * dy = 0 (dx * dxY + y * dxY) + -2(x2 + -1y) * dy = 0 Reorder the terms: (dxyY + d2x2Y) + -2(x2 + -1y) * dy = 0 (dxyY + d2x2Y) + -2(x2 + -1y) * dy = 0 Reorder the terms for easier multiplication: dxyY + d2x2Y + -2dy(x2 + -1y) = 0 dxyY + d2x2Y + (x2 * -2dy + -1y * -2dy) = 0 dxyY + d2x2Y + (-2dx2y + 2dy2) = 0 Reorder the terms: dxyY + -2dx2y + 2dy2 + d2x2Y = 0 Solving dxyY + -2dx2y + 2dy2 + d2x2Y = 0 Solving for variable 'd'. Factor out the Greatest Common Factor (GCF), 'd'. d(xyY + -2x2y + 2y2 + dx2Y) = 0Subproblem 1
Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0Subproblem 2
Set the factor '(xyY + -2x2y + 2y2 + dx2Y)' equal to zero and attempt to solve: Simplifying xyY + -2x2y + 2y2 + dx2Y = 0 Reorder the terms: dx2Y + xyY + -2x2y + 2y2 = 0 Solving dx2Y + xyY + -2x2y + 2y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-1xyY' to each side of the equation. dx2Y + xyY + -2x2y + -1xyY + 2y2 = 0 + -1xyY Reorder the terms: dx2Y + xyY + -1xyY + -2x2y + 2y2 = 0 + -1xyY Combine like terms: xyY + -1xyY = 0 dx2Y + 0 + -2x2y + 2y2 = 0 + -1xyY dx2Y + -2x2y + 2y2 = 0 + -1xyY Remove the zero: dx2Y + -2x2y + 2y2 = -1xyY Add '2x2y' to each side of the equation. dx2Y + -2x2y + 2x2y + 2y2 = -1xyY + 2x2y Combine like terms: -2x2y + 2x2y = 0 dx2Y + 0 + 2y2 = -1xyY + 2x2y dx2Y + 2y2 = -1xyY + 2x2y Add '-2y2' to each side of the equation. dx2Y + 2y2 + -2y2 = -1xyY + 2x2y + -2y2 Combine like terms: 2y2 + -2y2 = 0 dx2Y + 0 = -1xyY + 2x2y + -2y2 dx2Y = -1xyY + 2x2y + -2y2 Divide each side by 'x2Y'. d = -1x-1y + 2yY-1 + -2x-2y2Y-1 Simplifying d = -1x-1y + 2yY-1 + -2x-2y2Y-1 Reorder the terms: d = -2x-2y2Y-1 + -1x-1y + 2yY-1Solution
d = {0, -2x-2y2Y-1 + -1x-1y + 2yY-1}
| 5s+42=102 | | 5f-9=2 | | 2x+45+16= | | 2x+45+16=64 | | 440/445 | | 4x+8=(8x^2+32x)(x-2)(x-2) | | x^3-8x^2+16x=0 | | 12p-8=8p+4 | | 4x+8=(8x^2+64x)(x-2)(x-2) | | logx^3=9 | | Y(1+xy)dx+x(1-xy)=0 | | a+9=11a-5 | | a^4+a^3-3a-1=0 | | ln(x^3)=2 | | 8x+6+6x-4=9 | | 3a-9=a+6 | | (l-2x)(l-2x)x=V | | 10x+-1=6x+9 | | 10x+1=6x+9 | | 4cosx=3tanx | | 4a-2.2=6.8 | | 6(2x+3)=8x+15 | | 1/2(91/2)(5) | | 12x-18=6x-6 | | -5t^2+45t=0 | | 16x^3-3x^4=c | | a-6=7a+14 | | 12x-18=12x-12 | | 18x+3x=-2x+3 | | x^2-3x+16=4-10x | | 3x-2=-7x+9+2x | | 3+7*x=17 |